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Società Italiana di Fisica
Springer-Verlag 1999

Unbounded fluctuations in transport through an integrable cavity

P. Pichaureau1 and R.A. Jalabert1,2,a

1 Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex, France
2 Université Louis Pasteur, 3-5 rue de l’Université, 67084 Strasbourg Cedex, France

Received 17 July 1998 and Received in final form 23 November 1998

Abstract. We derive a semiclassical scheme for the conductance through a rectangular cavity. The trans-
mission amplitudes are expressed as a sum over families of trajectories rather than a sum over isolated
trajectories. The contributing families are obtained from the evaluation of a finite number of continued frac-
tions. We find that, contrary to the chaotic case, the conductance fluctuations increase with the incoming
energy and the correlation function exhibits a singularity at the origin.

PACS. 73.23.Ad Ballistic transport – 03.65.Sq Semiclassical theories and applications

1 Introduction

The density of states of small quantum systems is known
to be sensitive to the underlying classical mechanics. The
chaotic or integrable character of the classical dynamics
translates into the statistical properties of the spectra [1].
The spectral correlations of classically chaotic systems are
described according to random matrix theory [2] and the
fluctuations with respect to the mean density of states
are less pronounced than for integrable systems. The con-
nection between classical and quantum properties is par-
ticularly clear within the semiclassical approximation: the
density of states of classically chaotic systems is expressed
in the Gutzwiller trace formula [3] as a sum over [isolated]
periodic orbits, while integrable systems are described by
the Berry-Tabor formula [4], where the the density of
states is given as a sum over families of trajectories (or
invariant tori).

What is the corresponding situation in open systems?
Transport properties instead of spectral ones are usually
considered. The transmission amplitudes and probabili-
ties are given as semiclassical expansions over trajectories
that traverse the scattering region [5,6], providing a link
between classical and quantum properties. Such an ap-
proach is firmly established in the case of isolated trajec-
tories, as typically found for chaotic dynamics, but only
recently the subtleties associated with an integrable ge-
ometry have started to be addressed [7–11]. As in the
Berry-Tabor formula for the density of states, the exis-
tence of families of trajectories degenerate in action modi-
fies the structure of the semiclassical expansion. Integrable
cavities fed by leads present the additional problem that
conserved quantities in the scattering region are not nec-
essarily conserved in the leads. The semiclassical descrip-
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tion of transport through integrable cavities is a necessary
step towards understanding the influence of the underly-
ing classical mechanics in open systems. This is the goal of
this work, where we present a semiclassical evaluation of
the transmission amplitude through a rectangular cavity
and apply it to the study of the conductance fluctuations.

The interest in open systems stems from their parallel
with closed systems and also from the physically mea-
surable realizations that have been developed in the last
few years. High mobility-semiconductor microstructures
at low temperatures give access to the ballistic regime,
where transport is dominated by the geometrical scatter-
ing of electrons off the walls of the lithographically defined
cavities [12–14]. On the other hand, microwave cavities
provide an easily tunable system to study the propaga-
tion of electromagnetic waves in a defect-free region [15].

Quantum interference in ballistic cavities gives rise to
conductance fluctuations under a small perturbation of
the system (magnetic field, Fermi energy of the incom-
ing electrons, shape of the cavity, etc.) [12,16,17]. For
chaotic cavities, the characteristic correlation lengths of
the fluctuations are well-described by the existing semi-
classical theories [6,18], while the universal character of
the variance has been addressed within a Dyson hypothe-
sis for the scattering matrix [19,20]. Random matrix theo-
ries are obviously not appropriate to treat integrable sys-
tems, forcing us to rely on semiclassical expansions and
numerical calculations. The early experiments on ballistic
cavities [12] yielded a more structured spectrum of con-
ductance fluctuations for the integrable case than for the
chaotic one. This tendency was reproduced by numeri-
cal calculations [7] showing that in rectangular cavities
the higher harmonics of the conductance spectrum are
more pronounced than in the chaotic case. Also, the vari-
ance of the conductance appeared as increasing with the
mode number. The lack of transport theories for integrable
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Fig. 1. Unfolded space for the dynamics in a square cavity
(inset). The trajectory entering at the lowest point (y = 0)
of the left lead with an angle θ is shown in the original and
extended space. It belongs to the family that leaves the cavity
through the exiting lead (p0, q0) and has a weight δ0. For the
particular chosen θ there are two families contributing to the
transmission amplitude (0 and 1) and one family contributing
to the reflection amplitude (0∗).

systems (which do not enjoy the universality properties of
chaotic cavities) and the difficulties with their fabrication
are probably responsible for the fact that subsequent ef-
forts on conductance fluctuations were mainly centered on
the chaotic case [21].

Weak-localization, the decrease of the average conduc-
tance due to constructive interference of time-reversed
backscattering trajectories, is another quantum interfer-
ence effect which has recently been studied in ballistic cav-
ities. The underlying classical mechanics was proposed [22]
to translate into a different shape of the magnetoconduc-
tance peaks: a Lorentzian line-shape for chaotic cavities
and a triangular form for the integrable case. Chaotic
cavities indeed exhibited the Lorentzian line-shape while
rectangular and circular geometries showed triangu-
lar or Lorentzian peaks depending on the experiment
[16,17,23–25]. The importance of the leads has been
demonstrated [26] and the disagreements between differ-
ent experiments are not settled yet. This illustrates the dif-
ficulties in dealing with integrable cavities and the impor-
tance of developing appropriate theoretical descriptions.

In this work we consider a square cavity (of length
side 1) with hard walls and connected to leads on oppo-
site sides of the square by openings of size W (see inset
Fig. 1). (For our purposes square cavities are no less gen-
eral than rectangular ones since we can always scale one of
the sides.) We develop in Section 2 a semiclassical expan-
sion of the transmission amplitude between two modes in
terms of families of trajectories degenerate in action. The
determination of these families (Sect. 3) results in a dio-
phantic problem and the evaluation of a finite number of
continued fractions. This constitutes a very efficient nu-
merical method that is to be compared with the numer-
ical quantum approaches based on discretization of real
space or truncation of Hilbert space. The classical conduc-
tance (Sect. 4) and the unbounded fluctuations (Sect. 5),
increasing with the incoming energy, are obtained from

the numerical implementation of the continued fraction
approach. The correlation function of the conductance,
when properly normalized, is shown to be well-defined in
all the energy range and shows a cusp-like singularity at
the origin. Further approximations on our semiclassical
expansions allow us to demonstrate that the unbounded
conductance fluctuations grow linearly with the incoming
Fermi wave-vector k. In the conclusions (Sect. 6) we an-
alyze the experimental relevance of our findings and the
implications for other integrable geometries.

Transport through a square cavity has recently been
considered by Wirtz et al. [11], where alternative forms
of the transmission coefficient were proposed and the cor-
respondence between quantum results and classical tra-
jectories was established. The dynamics through rectan-
gular cavities constitutes a paradigm for the interplay
between scattering and integrability, and has been treated
in other contexts. For instance, it has been presented
by Zwanzig [27] as an example where the short memory
approximation to the migration of a classical dynamical
system between regions of configuration space is entirely
wrong.

2 Semiclassical formulation

We consider a phase-coherent cavity connected to two
reservoirs through leads that support N propagating
modes. The conductance in the Landauer formalism is
proportional to the transmission coefficient T

g =
e2

h
T =

e2

h

N∑
a,b=1

|tba|
2. (1)

The complex numbers tba are the transmission amplitudes
from the mode a at the entrance lead to the mode b at the
exit lead. They are related to the Green function (evalu-
ated at the Fermi energyEF) connecting the point (0, y) at
the entrance with (L, y′) at the exiting lead through [28]:

tba = −i~
√
vavb

∫∫
dy dy′ φ∗b(y

′)φa(y)

×G(L, y′; 0, y ;EF), (2)

where we have discarded an unimportant phase factor.
φa,b represent the transverse wave functions in the leads

of width W (φa(y) =
√

2/W sin(aπy/W )) and va,b the
longitudinal velocities associated with the modes a and b.

In the semiclassical approximation, the Green function
is expressed as a sum over trajectories joining the points
(0, y) and (L, y′) [3]:

Gscl(L, y
′; 0, y;EF) =

2π

(2πi~)3/2

∑
s(y,y′)

√
Ds

× exp

[
i

~
Ss(y

′, y, EF)− i
π

2
µs

]
. (3)

Ss is the classical action along the trajectory s. Since we
are considering billiards without magnetic field Ss = kLs,
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with k = mv/~ the Fermi wavevector and Ls the tra-
jectory length. Denoting θ and θ′ the incoming and out-
going angles, the preexponential factor is given by D =
(v cos θ′/m)−1|(∂θ/∂y′)y|. We include in the phase µs the
Maslov index counting the number of constant-energy con-
jugate points and the phase acquired at the bounces with
the hard walls.

The semiclassical expression of the transmission am-
plitude is obtained by using the above approximation of
the Green function in equation (2) and performing the y
and y′ integrals to leading order in ~. A stationary-phase
integration over y selects the trajectories entering the cav-
ity with the angle θā (ā = ±a and sin θā = āπ/kW ) and
leaving at the point y′, leading to

tba = i

√
vb

2W

∫
dy′ φb(y

′)
∑
ā=±a

∑
s(θā,y′)

sgn ā
√
Bs

× exp

[
i

~
S̃s(y

′, θā, EF)− i
π

2
µ̃s

]
. (4)

The reduced action is

S̃(y′, θā, EF) = S(y′, y0, EF) + ~πāy0/W , (5)

where y0(θā, y
′) is the initial point selected from the

stationary-phase integration. The prefactor is now given
by B = (v cos θ′)−1|(∂y/∂y′)θ|, and the Maslov index is
increased by one if (∂θ/∂y)y′ is positive.

When nearby trajectories are non-degenerate in action,
as is typically the case in chaotic cavities, the integral over
y′ can also be done by stationary-phase and the semi-
classical tba is expressed as a sum over trajectories with
quantized initial and final angles [6,7]. On the other hand,
when trajectories come in families with the same action
(or length) the phase in equation (4) is linear in y′, pre-
venting another stationary-phase integration. This is the
case of the trajectories directly crossing a ballistic cavity
from the entrance to the exiting lead, where the y′-integral
can be exactly done [7,9]. The trajectories going through
a square cavity also come in families, or bundles [11], and
the integration over the y′-coordinate is very similar to
the case of direct trajectories since the dynamics in an
extended space is that of free particles (Fig. 1).

Symmetry arguments for a rectangular cavity dictate
that tba = 0 if a+b is odd. For even a+b we perform the
y′-integration for each family n defined by the coordinates
(pn, qn) of the exiting lead in the extended space obtaining

tba = −
i

W

√
cos θb
cos θa

∑
n

{In(a+b)− In(a−b)}

× exp
[
i
(
kLn +

πa

W
(qn − Ln sin θa +Wε(qn))−

π

2
µ̃n

)]
(6)

where

In(x) =
W

πx

(
exp

[
iπx

W
y
′(n)
f

]
− exp

[
iπx

W
y
′(n)
i

])
. (7)

y
′(n)
i and y

′(n)
f are the extreme points of the exiting inter-

val, ε(qn) = 0 for even qn and ε(qn) = 1 for odd qn. The
parity of qn appears in the phase due to mirror symmetries
involved in going to the extended space. The trajectories of
the nth family have a length Ln = pn/ cos θa (all lengths
are expressed in units of the side of the square). In the
extended space we have free motion, therefore the phase
µ̃n is simply given by the pn−1 bounces with the vertical
walls and the qn bounces with the horizontal ones; that
is, µ̃n = 2(pn+qn−1). The trajectories that contribute
to the transmission amplitude are those going from the
left to the right lead, therefore only the values n with odd
pn should be considered. Conversely, the even values of pn
yield the reflection amplitude. For transmission amplitude
we can simplify the phase of equation (6) and write

tba=−
i

W

√
cos θb
cos θa

∑
n

εn exp[ikL̃n] {In(a+b)−In(a−b)} .

(8)

We have defined the phase

εn = exp[iπ(a+1)ε(qn)] , (9)

and the reduced length

L̃n = pn cos θa + qn sin θa . (10)

Similarly to the case of direct trajectories [7], ā+ b̄ = 0
has to be treated separately for the y′-integration. How-
ever, the corresponding result is included in equation (8)
by taking the limit x → 0. Obviously, ā+ b̄ = 0 corre-
sponds to the maximum transmission since this is the
case where the classical trajectory arrives to the exit-
ing lead with the quantized angle of mode b. As empha-
sized in reference [11], the diffractive terms obtained for
ā + b̄ 6= 0 become more important for families with a

weight δn = y
′(n)
f − y′(n)

i �W .

3 Continued fraction representation

In order to calculate the semiclassical transmission am-
plitude of equation (8) we need to determine all fami-
lies n, with their exiting lead (pn, qn) and extreme points

y
′(n)
f,i . This evaluation naturally leads to a diophantic prob-

lem [30]. As we show below, the coefficients (pn, qn) are
part of the intermediate fractions (or Farey series) appear-
ing in the continued fraction representation of 1/ tan θā.

For a given angle θ and an initial point y0, the trajec-
tory in extended space is the straight line D(y0) defined
by y = y0+x tan θ. Let us start with the trajectory enter-
ing the cavity at the lowest point (y0 = 0), whose exiting
lead is defined by the segment [(p0, q0); (p0, q0 +W )] which
intersects D(0) (see Fig. 1). As we increase y0, we will re-
main within a family of degenerate trajectories (that we
note by n=0) until the exiting point y0+p0 tan θ hits the
uppermost point of the segment. The pair (p0, q0) must
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verify the conditions:

a. 0 < p0 tan θ − q0 < W ,
b. ∀(p, q) such that

0 < p tan θ − q < p0 tan θ − q0 ⇒ p > p0.

According to a, the first y-interval is [0, δ0] (or equiva-
lently, the first y′-interval is [W − δ0,W ]), while condition
b means that (p0, q0) is the first lattice point verifying a.
The uppermost family will be associated with an inter-
val [(p∗0, q

∗
0); (p∗0, q

∗
0 +W )], where the pair (p∗0, q

∗
0) verifies

similar conditions as (p0, q0):

c. 0 < W + p∗0 tan θ − q∗0 < W ,
d. ∀(p, q) such that

W + p∗0 tan θ − q∗0 < W + p tan θ − q < W ⇒ p > p∗0.

According to c, the first y-interval of the uppermost family
is [W−δ∗0 ,W ] (the first y′-interval is [0, δ∗0]), while d implies
that (p∗0, q

∗
0) is the first lattice point verifying c.

Now that we have determined the lowest and the up-
permost families for the [0,W ] y-interval, the following
sequences of families can be obtained by reducing our-
selves to the y-interval [δ0,W−δ∗0 ], and with the changes
of (p0, q0), (p∗0, q

∗
0) by (p1, q1), (p∗1, q

∗
1) the conditions a−d

define the next two families. Continuing this procedure
until the two sequences of families begin to overlap each
other, we obtain all the terms to be included in the sum
of equation (8). For the sequence of lower families we have

y′i(pl, ql) = W + (pl − pl−1) tan θ − (ql − ql−1), (11a)

y′f(pl, ql) = W, (11b)

δl = y′f − y
′
i = ql − ql−1 − (pl − pl−1) tan θ, (11c)

while for the upper-families we have

y′i(p
∗
u, q
∗
u) = 0, (12a)

y′f(p
∗
l , q
∗
l ) = (p∗u − p

∗
u−1) tan θ − (q∗u − q

∗
u−1), (12b)

δ∗u = (p∗u − p
∗
u−1) tan θ − (q∗u − q

∗
u−1). (12c)

The very last family is simultaneously shadowed by lower
and upper families, therefore has y′i given by (11a) and y′f
by (12b).

We can now establish the relationship with the contin-
ued fraction representation of Θ=1/ tanθ, that is defined
by the sequences (αm) and (am) as follows [30]:

α0 = Θ a0 = [α0]

αm+1 =
1

αm − am
am+1 = [αm+1].

(13)

[α] denotes the integer part of α. The best rational ap-
proximations to Θ are the fractions Pm/Qm, called con-
vergents, and obtained from the recurrence relations{

Pm = Pm−2 + amPm−1

Qm = Qm−2 + amQm−1,
(14)

with the initial choice of (P−1, Q−1) = (1, 0) and
(P0, Q0) = ([Θ], 1). Since (Pm) and (Qm) are sequences
of integers, we can represent the convergents as lattice
points (Pm, Qm) that approach the straight line D(0) as
m increases from above (even m) and below (odd m).
Moreover, the convergents verify

e. ∀(p, q) such that

|p tan θ − q| < |Pm tan θ −Qm| ⇒ p > Pm.

The intermediate lattice points on the segment
[(Pm−2, Qm−2), (Pm, Qm)]) define the m th Farey
sequence (or intermediate fractions) by{

pkm = Pm−2 + kPm−1

qkm = Qm−2 + kQm−1
0 ≤ k ≤ am. (15)

The sequence of equally spaced lattice points (pkm, q
k
m)

starts at the convergent (Pm−2, Qm−2) (for k=0) and fin-
ishes at (Pm, Qm) (for k=am). The translation vector is
given by the coordinates of the convergent (Pm−1, Qm−1)
and the intermediate fractions verify the properties

f. ∀m, k, (p, q) such that

0 < p tan θ − q < pk2m+1 tan θ − qk2m+1 ⇒ p > pk2m+1,

g. ∀m, k, (p, q) such that

qk2m − p
k
2m tan θ > q − p tan θ > 0⇒ p > pk2m.

These are the conditions b and d, respectively, determin-
ing the lattice points associated with the exiting leads.
Therefore, the two types of families contributing to tba
are given by the Farey sequences of even and odd order
convergents, with the the additional requirements that pn
is odd and that the exiting points are closer than W to
the straight line D(0).

The continued fraction representation of a generic (ir-
rational) real number results in an infinite sequence of
convergents. However, the fact that we have defined a fi-
nite distance W to approach D(0) implies that once the
lower and upper families begin to overlap the sum in
equation (8) can be cut. Therefore, for each angle θa the
sum is actually finite. In addition, we show in the sequel
that at most three sequences of intermediate fractions con-
tribute to it. Let us consider the first convergent (Pm, Qm)
contributing to the sum (the previous convergents being
farther away than W to D(0)), and assume for definite-
ness m to be odd. Clearly, before this convergent we can
only have one contributing Farey sequence:

(pkm, q
k
m) with k ∈ (1, am). (16)
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The k = 0 case is excluded because otherwise (Pm, Qm)
would not be the first convergent of the sum. The following
sequence,

(pkm+1, q
k
m+1) with k ∈ (1, am+1), (17)

is relevant since it finishes at the next convergent
(Pm+1, Qm+1) = (pm+1

m+1, q
m+1
m+1), which must contribute to

the sum. It is closer to D(0) than (Pm, Qm)) and it is
not completely shadowed by (Pm, Qm) (they are at oppo-
site sides of D(0)). Consequently, there are two possibili-
ties: (i) (Pm+1, Qm+1) is partially shadowed by (Pm, Qm)
and therefore the sum stops there since the points
(pkm+2, q

k
m+2) with k > 0 will be completely shadowed;

(ii) (Pm+1, Qm+1) is not shadowed by (Pm, Qm), therefore
(p1
m+2, q

1
m+2) is simultaneously shadowed by (Pm, Qm)

and (Pm+1, Qm+1) since W+q1
m+2−p

1
m+2 tan θ > Qm+1−

Pm+1 tan θ > 0 is equivalent to W + Qm − Pm tan θ > 0,
which is precisely the condition for (Pm, Qm) being an ex-
iting point. The points (pkm+2, q

k
m+2) with k > 1 are com-

pletely shadowed, and therefore the series stops there. In
conclusion, in the case (i) the contributing Farey sequences
are those of equations (16, 17), while in case (ii) we have to
add one intermediate fraction of the next family, namely
(p1
m+2, q

1
m+2).

The above considerations simplify the semiclassical
transmission amplitude of equation (8) to a finite sum,
having at most three sequences of intermediate fractions.
In case (i) the form of the y′-intervals (Eqs. (11, 12)) is
[W−δl,W ] or [0, δ∗u], therefore equation (8) can be written
as

tba =
1

W

√
cos θb
cos θa

∑
n=l,u

εnε
′
n exp [ikL̃n]

× {∆n(a+ b)−∆n(a− b)} δn, (18)

with the family-dependent function ∆n defined by

∆n(x) =
2W

πxδn
exp

[
i
πxδn

2W

]
sin

[
πxδn

2W

]
, (19)

ε′n = 1 if n = u (upper family) and ε′n = −1 if n = l
(lower family). As previously stated, only odd pn should
be considered in the expansion for the transmission ampli-
tude. In case (ii) the last family does not have a y′-interval
with the simple form of the previous ones. Therefore,
equation (18) depending only on the weights δn can be
used for all terms (families of trajectories), except for the
last one, were the form (8) together with the limits (11a)
and (12b) should be employed. However, for the last fam-
ily the weight δ(p1

m, q
1
m) is very small and to first order

in (a± b)δ(p1
m, q

1
m)/W , we can still use equation (18). We

stress that the subindex n runs over contributing families,
while m labels the convergents (contributing or not) and
the superindex k orders the intermediate fractions of the
Farey sequences.

The forms (8) and (18) of the transmission amplitude
provide a very powerful method to numerically compute
the conductance through a rectangular cavity. For each
a = 1, . . . , N , we only need to calculate a finite number
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Fig. 2. Conductance through a square cavity in units of e2/h
as a function of the number of modesN = kW/π for an opening
ofW = 0.2 in units of the size of the square. Inset: local average
of the conductance fluctuations 〈δT 2〉 versus N . The straight
line is the local variance of the fluctuations computed from
equation (31).

of convergents and intermediate fractions of the continued
fraction representation of 1/ tan θa and recursively obtain
the weighting intervals δn. The advantage over quantum
methods based on discretization (recursive Green func-
tion, wave function matching, etc.) is that it can be used
for large wavevectors k. The method actually gets more
exact with increasing k since it involves a semiclassical
approximation. Obviously, equation (18) does not incor-
porate diffractive effects like reflection off the lead mouths
[8,10,29]. However, as shown in reference [10], the semi-
classical approach can be adapted in order to describe
these simple diffractive effects.

In Figure 2 we present the conductance of a square cav-
ity calculated from equation (18) for an opening W = 0.2
in a large k-interval (the k-mesh shown is relatively sparse
for viewing purposes). We remark two salient features: the
linear increase of the mean conductance with N = kW/π
and the fluctuations around the mean, which become
larger as k increases. The linear increase of 〈g〉 with a
slope given by the classical transmission coefficient con-
stitutes a checking of the procedure, the increase of the
fluctuations obtained within our semiclassical approach is
consistent with previous quantum computations [7]. In the
following section we show that further approximations on
the semiclassical transmission amplitudes tba allow us to
obtain both these features analytically.

As it has been shown in previous studies comparing
semiclassical and quantum results [8,10,11], the former
reproduce the gross structure of the fluctuations in the
intermediate k-regime (not too small k in order for semi-
classics to apply and not too large k to prevent the quan-
tum calculations becoming unreliable). The quantum-
semiclassical correspondence is particularly clear at the
level of the Fourier components of the transmission coef-
ficients. Specifically, for square cavities Wirtz et al. [11]
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have identified the peaks of the Fourier transforms with
the families (or bundles) of classical trajectories contribut-
ing in a semiclassical expansion. Unitarity, the mathemati-
cal translation of charge conservation, is a critical test for
semiclassical approximations. In our case, the difference
T +R−N grows with N , but it remains smaller than the
fluctuations of T .

4 Mean conductance

The semiclassical expression (18) for the transmission am-
plitude is very useful since, as we have shown in the pre-
vious chapters, the numerical evaluation of a few contin-
ued fractions allows the calculation of the conductance. In
the sequel we further simplify this semiclassical approach
in order to render it analytically tractable. The function
∆n(x) defined in equation (19) is peaked for x = 0 (when
the quantized angles of the incoming and outgoing modes
coincide with the angle of the trajectory) and decays on
the scale of W/δn, therefore it can be approximated by
the rectangular function

Πn(x) =

 exp

[
i
πxδn

2W

]
if |x| < W

2δn
,

0 otherwise.

Thus, the semiclassical tba simplifies to:

tba =
1

W

√
cos θb
cos θa

∑
n

Πn(a− b)εnε
′
nδn exp[ikL̃n]. (20)

The total transmission coefficient is obtained by summing
the magnitude squared of the transmission amplitudes
over the propagating modes. Therefore, within our semi-
classical approximation, it will be expressed as a sum over
pairs of families of trajectories (with odd pn and pn′).

T =
1

W 2

N∑
a,b=1

cos θb
cos θa

∑
n,n′

εnεn′ε
′
nε
′
n′δnδn′

× exp [ik(L̃n − L̃n′)]Πn(a− b)Πn′(a− b). (21)

From this highly oscillating function of k, we want to ex-
tract its secular behavior, linear in k. Averaging T (k)/k
over all k [7] (or T (k) over several oscillations) amounts
to make the diagonal approximation between the families
of trajectories (n = n′). In the well-studied case of iso-
lated trajectories, the diagonal approximation yields the
classical probability of transmission by pairing individual
trajectories. In the present case, the concept of families
of trajectories replaces the role of individual trajectories.
Inserting the definition of the function Π, we find

〈T 〉 =
1

W 2

N∑
a=1

∑
n

δ2
n

(
bmax∑
b=bmin

cos θb
cos θa

)
, (22)

bmin =max{a−W/2δn, 1} and bmax =min{a+W/2δn, N}.
We now split the sum over families according to

〈T 〉 =
1

W 2

N∑
a=1

1

cos θa

[ ∑
0<δn<δα

δ2
n

N∑
b=1

cos θb

+
∑

δα<δn<δβ

δ2
n

bmax∑
b=bmin

cos θb

+
∑
δn>δβ

δ2
n

a+W/2δn∑
b=a−W/2δn

cos θb

 (23)

with δα and δβ respectively the min and max of
{W/2a,W/2(N − a)}. In the classical limit of N =
kW/π � 1 the last term dominates and the sum over
b can be approximated by an integral leading to

〈T 〉 =
N∑
a=1

∑
n

δn

W
· (24)

For each mode a we have simply obtained the total weight
of trajectories contributing to transmission. In the classi-
cal limit the sum over a is converted into an integral over
the initial angle θ and we write

〈T 〉 = Nτ (25)

with

τ =

∫ π/2

0

dθ cos θ
∑
n

δn

W
· (26)

Therefore, the total transmission coefficient is propor-
tional to the number of modes, and the constant τ is a
purely geometric factor. Breaking the contribution of fam-
ilies into that of individual trajectories we are left with the
usual classical transmission probability [7]

τ =
1

2

∫ π/2

−π/2
dθ cos θ

∫ W

0

dy

W
f(y, θ), (27)

where f(y, θ) = 1 if the trajectory with initial conditions
(y, θ) is transmitted and f(y, θ) = 0 otherwise.

The mean slope in the numerical results of Figure 2
(with W = 0.2) is 0.67, in excellent agreement (better
than 0.5%) with the classical transmission probability τ .
Also, the local mean 〈T (k)〉 of equation (24) presents the
same slope τ and the mode quantization gives rise to fluc-
tuations around this mean (which remain much smaller
than those of T (k)). The classical coefficient τ can be ob-
tained, as in equation (27), by sampling the space of classi-
cal trajectories with random choices of initial conditions θ
and y [7], or more efficiently, by sampling the angles θ and
incorporating the weights δn emerging from the interme-
diate fractions of 1/ tan θ, as suggested by equation (26).
We then see that the continued fraction approach is not
only useful for evaluating semiclassical effects, but also for
classical properties like the transmission coefficient or the
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length distribution. Random sampling of classical trajec-
tories is an appropriate procedure for chaotic structures,
where the ergodicity of phase space results in an exponen-
tial distribution of lengths. On the other hand, integrable
cavities exhibit power-law distributions, which are more
difficult to obtain by trajectory sampling. In this case,
the continued fraction approach is very efficient since, for
a given angle, only a finite number of terms are relevant,
and the contributing families are incorporated at once ac-
cording to their weight.

The straight line that best approximates the transmis-
sion coefficient T (k) is τN + κ. The constant κ is related
with the elastic backscattering and also depends on the
underlying classical dynamics. In particular, the depen-
dence of κ on the magnetic field results in the weak lo-
calization effect [7,22]. However, we will not address the
effect of a magnetic field in this work, nor the calculation
of κ.

5 Conductance fluctuations

As visible from Figure 2, the oscillations around the mean
transmission coefficient τN + κ grow with larger N , con-
sistently with the numerical quantum mechanical calcu-
lations of reference [7]. We will now evaluate the local
fluctuations, that is 〈δT 2〉 = 〈(T − (τN +κ))2〉. We begin
with the simplified expression (21) of T , and write

T 2 =
1

W 4

N∑
a,b,a′,b′=1

cos θb
cos θa

cos θb′

cos θa′

×
∑

n,n′,n′′,n′′′

εnεn′εn′′εn′′′ε
′
nε
′
n′ε
′
n′′ε
′
n′′′δnδn′δn′′δn′′′

× exp
[
ik(L̃n − L̃n′ + L̃n′′ − L̃n′′′)

]
×Πn(a− b)Πn′(a− b)Πn′′(a

′ − b′)Πn′′′(a
′ − b′).

(28)

If we take the average over several fluctuations, we only
consider the terms having a null phase, i.e.

L̃n − L̃n′ + L̃n′′ − L̃n′′′ = 0. (29)

This condition is satisfied with the pairing L̃n = L̃n′ and
L̃n′′ = L̃n′′′ , but the resulting term cancels against the
square of the average transmission coefficient. A non triv-
ial pairing is obtained when L̃n = L̃n′′′ and L̃n′ = L̃n′′
with L̃n 6= L̃n′ , which implies a = a′. The contribution of
this pairing to the local fluctuations is

〈δT 2〉I =
1

W 4

N∑
a=1

N∑
b,b′=1

cos θb cos θb′

cos2 θa

×
∑
n,n′

Πn(a−b)Πn′(a−b)Πn′(a−b
′)Πn(a−b′)δ2

nδ
2
n′

=
1

W 4

N∑
a=1

∑
n,n′

(
min

{
W

δn
,
W

δn′

})2

δ2
nδ

2
n′ .

(30)

In the semiclassical limit the sum over a can be converted
into an integral dictating a linear behavior of 〈δT 2〉I with
respect to k

〈δT 2〉I =
N

2

∫ π/2

−π/2
dθ cos θ

∑
n,n′

(
min {δn, δ′n}

W

)2

. (31)

The proportionality coefficient is only related to the geom-
etry of the cavity, and can be computed using continued
fractions.

The two pairings above described are those usually
considered in dealing with chaotic cavities, except that
in such cases we take individual trajectories instead fam-
ilies. In the integrable system we are studying there is
another non trivial way of satisfying equation (29), that

is, L̃n − L̃n′ = L̃n′′ − L̃n′′′ , with L̃n 6= L̃n′ and L̃n 6= L̃n′′ .
This typically happens when n, n′, n′′, and n′′′ belong to
the same (mth) Farey sequence and they are respectively
associated with the intermediate functions (pk+j

m , qk+j
m ),

(pkm, q
k
m), (pk

′

m, q
k′

m), and (pk
′+j
m , qk

′+j
m ), with k 6= k′, j 6= 0

and k, k′, k + j, k′ + j ∈ (0, am). Also, since we are deal-

ing with transmission coefficients, we need pkm, pk
′

m, pk+j
m

and pk
′+j
m to be odd, which implies that if j is odd,

Pm−1 must be even. Under such conditions, according to
equations (10, 15) we have

L̃n − L̃n′ = j (Pm−1 cos θa +Qm−1 sin θa) . (32)

If neither n nor n′ correspond to the first family of the
sequence (k, k′ 6= 0), equations (11c, 12c, 15) dictate that
the four exiting intervals have the same length

δm = |Pm−1 tan θ −Qm−1| . (33)

This last contribution to the local fluctuations can be ex-
pressed as a sum over the convergents

〈δT 2〉II =
N∑
a=1

∑
m

am∑
k,k′=0

∑
j

δ2
m

W 2
, (34)

with the above specified restrictions for k, k′ and j. As in
the previous case, converting the sum over a into an inte-
gral yields a contribution 〈δT 2〉II to the local fluctuations
that is linear in k, with a purely geometrical coefficient
given by the continued fraction representation of 1/ tanθ.

The linearity of 〈δT 2〉 = 〈δT 2〉I + 〈δT 2〉II with k that
we have demonstrated is in good agreement with our nu-
merical results of Figure 2. In the inset we show the nu-
merically obtained 〈δT 2〉 and the straight line representing
〈δT 2〉I from equation (31), with a proportionality coeffi-
cient of 0.13 calculated from the continued fractions. The
agreement is very good and shows that 〈δT 2〉II is negli-
gible in comparison with 〈δT 2〉I . Such behavior is under-
standable since, for a given incoming mode a, the latter
is given by a double sum over families of trajectories (n
and n′), while the former is given as a [single] sum over
the convergents (m) and sums within the associated Farey
sequence, provided it verifies the above established condi-
tions. The denominators Qm of the convergents increase
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Fig. 3. Correlation function locally normalized according to
equation (36) for five N intervals: 0–20 (thick solid), 20–40
(thin solid), 40–60 (dotted), 60–80 (dashed) and 80–100 (long-
dashed). Inset: blow up of the small ∆N region showing a
triangular behavior at the origin for all the intervals considered.

exponentially with m, Qm ≥ 2(m−1)/2 [30], or more pre-
cisely as Greenman has recently proved [31]

lim
m→∞

Q1/m
m = exp

[
π2

12 log 2

]
, (35)

bar a set of measure zero. Therefore, the am of
equations (13, 14), giving the number of intermediate frac-
tions of the mth sequence, remain of order 1 even in the
large m-limit. Consequently, there are much more terms
contributing to 〈δT 2〉I than to 〈δT 2〉II .

In chaotic cavities the diagonal approximation is not
enough to describe the magnitude of the conductance fluc-
tuations, due to the exponential proliferation of trajec-
tories that results in almost degenerate actions. This is
clearly not the case in rectangular cavities, where we have
shown the good agreement between 〈δT 2〉I and the nu-
merical results.

Conductance fluctuations are usually characterized by
their amplitude 〈δT 2〉 and their energy-correlation length.
In chaotic cavities, random matrix theory and numerical
simulations [19,20] yield an universal 〈δT 2〉, independent
of energy. The correlation length can be obtained from
a semiclassical approach [6,18] and is proportional to the
escape rate (the inverse characteristic time that scattering
trajectories spend in the cavity). In our integrable cavity
we have seen that 〈δT 2〉 is not universal, but energy depen-
dent. Also, there does not exist a characteristic time for
exiting the cavity. Therefore it is not obvious that a cor-
relation function depending only on the energy increment
can be defined. That is why we consider the correlation
function

C(∆k) =
〈δT (k +∆k)δT (k)〉

〈δT 2(k)〉
, (36)

where k varies on an interval much larger than ∆k, but
small enough to neglect secular variations.

From equations (36, 18) we obtain numerically the cor-
relation functions shown in Figure 3 for various N in-
tervals from 0–20 (thick solid) to 80–100 (long-dashed).
Except for the first interval, where the semiclassical ap-
proximation is most questionable, the form of C(∆k)
seems to be almost independent of the region of evalu-
ation. Moreover, a singularity for small ∆k appears in all
the N -intervals in the form of a cusp around the origin (in-
set). The linear behavior of C(∆k) is to be contrasted to
the Lorentzian correlation function expected for a chaotic
cavity. This difference between integrable and chaotic cav-
ities is reminiscent of what happens with the weak local-
ization effect: a semiclassical approach predicts a linear
magneto resistance for integrable cavities and a Lorentzian
lineshape for chaotic ones [22]. The linear behavior of the
correlation function is consistent with the quantum calcu-
lations of reference [7] that yielded a decay of the power
spectrum (Fourier transform of C(∆k)) as x−2 at large x.

The oscillatory structure of C(∆N) on the scale of
∆N ' 0.2 corresponds to a typical length of twice the
size of the square. We can understand this behavior by
noticing that, for a given angle θ, the smallest possi-
ble difference between the length of two trajectories is 2.
The analytical calculation of C(∆k) is considerably more
involved than that of 〈δT 2〉; we will have a sum as in
equation (30), where each term should be multiplied by

exp [i∆k(L̃n − L̃n′)]. Therefore it looks rather difficult to
extract analytically the triangular behavior around the
origin.

6 Conclusions

In this work we have developed a semiclassical method
to calculate the transmission through a rectangular cav-
ity, based on continued fractions. We have proved that
the expansions, over families of trajectories, are finite and
reproduce the basic features of quantum mechanical cal-
culations. The conductance fluctuations, within our semi-
classical approximation, are shown to be qualitatively dif-
ferent from the chaotic case: they increase linearly with
the incoming Fermi wave-vector (with a proportionality
coefficient that can be easily obtained with our scheme)
and the correlation function presents a cusp-like singular-
ity at the origin. The continued fraction approach is also
useful to address classical properties like the transmission
coefficient, the length distribution, or the area distribution
(responsible for the the shape and magnetic field scale of
the weak-localization effect).

We have seen that open systems exhibit larger fluc-
tuations when the classical dynamics is integrable. The
situation is analogous to the density of states of closed
systems, which is characterized by stronger fluctuations
in integrable than in chaotic geometries. The augmented
fluctuations in integrable closed and open geometries can
be traced to the same origin: the bunching of trajectories
into families in the semiclassical expansions, the Berry-
Tabor formula and equation (18) respectively.

In the example discussed in this work the classical dy-
namics in the leads has the same conserved quantities than
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in the cavity, leading to bunching of trajectories in fami-
lies of degenerate action. This is not the case in circular
cavities, where a semiclassical expansion based on indi-
vidual trajectories has been developed [9]. Therefore, the
geometry of the leads plays a very important role [26] and
renders the quantum signatures of integrability in open
systems quite involved.

The existing experimental results [12,17] show the dif-
ference in the conductance fluctuations of integrable and
chaotic cavities, but more work should be undertaken to
test our results. The variation of Fermi energy (or num-
ber of modes N) has been achieved in chaotic and inte-
grable ballistic microstructures [16,32]. However, the in-
tervals ∆N of variation remain much smaller than those
allowing to detect a linear increase of the variance. There-
fore, microwave cavities [15] appear as more promising for
the observation of such an effect.

We are indebted to H. Baranger, K. Richter and D. Ullmo for
important remarks on the manuscript. We thank J. Bellisard
and J. Keating for helpful hints on continued fractions.
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